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Abstract. We report on a detailed investigation of the phase equilibria and the Fermi surface in the Al-
Zn system. Our calculation are based on the density functional theory and we use the linear muffin-tin
orbital method and the Green’s function technique. The calculated free energies of alloy formation exhibit
the existence of a miscibility gap between the alloys containing approximately 10 and 55 at.% of Zn, in
agreement with the phase diagram of the Al-Zn system. Seven electronic topological transitions (ETT)
were found in Al-Zn system within the stability range of the fcc solid solution. A relation between these
ETT and the phase stability of the fcc Al-Zn solid solutions is established. We show that extremum points
on the concentration dependencies of the thermodynamic properties of Al-Zn alloys can be explained by
band-filling effects.

PACS. 71.23.-k Electronic structure of disordered solids – 71.18.+y Fermi surface: calculations
and measurements

1 Introduction

It is well-known that from the microscopic point of view
there must exist a connection between the peculiarities of
electronic spectrum of an alloy and the phase stability in
the system [1–7]. For example, the changes in the band fill-
ing caused by the alloying between two elements may lead
to changes in the Fermi surface topology, and thus lead to
the peculiarities of the alloy properties. It has been shown
theoretically [8] and experimentally [9] that these so-called
electronic topological transitions (ETT) affect certain ki-
netic and thermodynamic properties of metals and alloys
such as thermopower, residual resistivity, the coefficient
of thermal expansion, elastic moduli, etc. in the vicinity
of the transition point [10–15]. In the present work we
perform a detailed investigation of relations between the
ETT and the the alloy phase stability by studying the
electronic nature of the isostructural spinodal decomposi-
tion in the Al-Zn system. Recently we have shown that the
ETT do exist in the Al-Zn system, and that these tran-
sitions influence the phase equilibria in the Al-Zn system
and they account for an assymetry of the miscibility gap
on the phase diagram [16]. In the present paper we report
in detail on the results of our investigation.

A phase diagram of the Al-Zn binary system is shown
in Figure 1a. There are no stable ordered intermetallic
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Fig. 1. (a) Experimental Al-Zn phase diagram, redrawn from
reference [17]; (b) Experimental energy of mixing of the fcc Al-
Zn random alloys compiled from different sources. Data pre-
sented in reference [17] (triangles) and reference [18] (circles)
are recalculated to account for the fcc-hcp structural energy
difference of Zn, see text. Solid line in (b) shows the CAL-
PHAD estimation of the enthalpy of mixing presented in ref-
erence [19].
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compounds in this system. A random substitutional fcc
solid solution of Zn in Al is stable up to 66.5 at.% Zn at
high temperatures. At temperatures below 624.6 K, a mis-
cibility gap opens up between two (α1 and α2) fcc solid
solutions. However, the monotectoid line has its maximum
at 39.5 at.% Zn, rather than at the equiatomic composi-
tion, as one could expect in the model of regular solid so-
lutions. The concentration of the spinodal point, in fact,
coincides with a maximum of the measured mixing en-
ergy in this system (Fig. 1b) [17–19]. At temperatures
below 548 K, the α2 solid solution with the concentra-
tion of 59.4 at.% Zn becomes unstable, the solubility of
Zn in the α1 phase rapidly decreases with decreasing the
temperature, and a wide two-phase region exists between
α1 fcc solid solution and a Zn-based solid solution. Due
to this feature, Al-Zn alloys have attracted great atten-
tion as a model alloy system for studies of spinodal [20]
and discontinuous [21] decomposition, as well as of second
phase precipitation [22,23].

The existence of a miscibility gap between two fcc solid
solutions which differ only in their concentrations is very
interesting from the theoretical point of view. The atomic
radii of Al (1.43 Å) and Zn (1.37 Å) are very close to each
other, so are their electronegativities (1.61 and 1.65, re-
spectively), and even their bulk moduli are quite similar
(72.2 GPa and 59.8 GPa). The two major differences are
their equilibrium crystal structures (fcc for Al and hexag-
onal for Zn), and the electron-per-atom ratio (roughly
speaking, an Al atom has three valence electrons, whereas
a Zn atom has only two). The role of the crystal struc-
ture contribution to the solid solubility in metallic alloys
is well-known [24], and for the Al-Zn system it was re-
cently elucidated by Müller et al. [22]. But, as a matter of
fact, crystal structure itself is determined by the electronic
structure factor [25,26]. In particular, taking into account
the complexity of the Fermi surface of pure Al, one can
expect that the changes in the band filling caused by the
addition of Zn to Al may lead to ETTs and, therefore,
influence the phase stability in this system.

2 Alloy stability upon the electronic
topological transition

Alloy stability against a spinodal decomposition (or,
equivalently, against infinitesimal fluctuations of the al-
loy concentration apart from its average value c) is deter-
mined by the second derivative of the free energy d2F/dc2.
A negative value of the second derivative means absolute
instability, whereas a positive value means that the alloy
is metastable, i.e. that a certain nucleation energy is re-
quired to begin the process of alloy decomposition [4]. At
the same time, one of the main contributions to the alloy
formation energy, and thus to its second derivative, comes
from the one-electron energy (band structure) term. More-
over, the second derivative of the alloy formation energy
is governed by the electron density of states at the Fermi
level. Qualitatively, this conclusion can be derived within
the simplest rigid-band model which is formulated below.

Let us consider a binary alloy A1−cBc and assume that
its components form a common rigid sp-band. In this case
the only change of the electronic structure upon variation
of concentration would be a change of the band filling.
Let us denote the valence numbers of alloy components A
and B as NA and NB, respectively, and their difference as
∆ = NB − NA. Then one can calculate the one-electron
energy contribution to the total energy of the alloy, be-
cause this is the only term that explicitly depends on the
DOS, n(ε):

Ebs =
∫ εF

εb

ε n(ε)dε, (1)

where εb is the valence band bottom. The Fermi level, εF ,
is determined by the mean number of valence electrons
per atom,

N̄ =
∫ εF

εb

n(ε) dε, (2)

or, correspondingly, by the alloy concentration c = (N̄ −
NA)/∆.

The band-structure contribution to the second deriva-
tive of the alloy formation energy is then

d2Ebs

dc2
=

∆2

n(εF )
· (3)

According to the one-electron theory of electronic
topological transitions in alloys [8,10,13], the alloy prop-
erties which are high-order derivatives of the thermody-
namic potential with respect to the parameter of proxim-
ity to the transition point must become singular at the
ETT [28]. For instance, the second derivative of the ther-
modynamic potential is expected to have singularities of
the same type as the singularities in the density of electron
states. In the ideal case of an ETT at zero temperature
and without a smearing due to disorder, the density of
states near the transition point consists of two parts, a
regular part nreg and a singular part nsing,

n(ε) = nreg(ε) + nsing(ε) = n0 +

{
α(ε − ε∗)1/2, ε > ε∗

0, ε < ε∗

(4)

where ε∗ is the critical point. Thus, the DOS shows a
square root-type singularity when the ETT occurs.

In general, this peculiarity is quite weak [15,29]. How-
ever, as has been pointed out by Katsnelson et al. [30], a
stronger singularity nsing(ε) ∼ ln|ε − ε∗| may occur as a
result of confluence of two square root-type singularities.
As a result, see equation (3), one can expect superior sta-
bility of an alloy whose Fermi level falls into a minimum
of the DOS in a vicinity of such a ETT, and vice versa for
the maximum. The discussion above establishes a connec-
tion between the ETT and the alloy stability with respect
to the spinodal decomposition.
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3 Computational technique

3.1 Details of calculations

Our electronic structure calculations were based on the
density functional theory [31,32] and made use of the lo-
cal density approximation (LDA) for the one-electron po-
tential including the non-local corrections in the frame-
work of the generalized gradient approximation (GGA)
[33]. We employ a basis set of the linear muffin-tin or-
bitals (LMTO) of Andersen and co-workers [34–39]. Since
the 3d states of Zn are fully occupied and are located close
to the bottom of the valence band, we had to consider
both the 3d and 4d states of Zn as valence states. In or-
der to have a good description of the wave functions and
electron density on the Zn site, we calculated the exact
energy dependence of the potential function rather than
used its LMTO parametrization. The core states of Al and
Zn were recalculated at each loop of the self-consistency
procedure. The atomic spheres of the alloy components
were taken to be equal to the average Wigner-Seitz radius
in the alloy.

Brillouin zone integration was done with the help of
the special point technique, [40] covering 2304 special k-
points in the 1/48 irreducible wedge of the Brillouin zone
for the fcc lattice. The density of states (DOS) moments
were evaluated by integration along a complex energy con-
tour on which 20 energy points were distributed in a loga-
rithmic (Gaussian) mesh. The equilibrium lattice parame-
ter and the corresponding ground state properties of each
alloy were obtained on the basis of 6 self-consistent cal-
culations at different lattice parameters close to the total
energy minimum. The equation of state for each alloy was
obtained by fitting the calculated total energies using the
4th order polynomials.

3.2 Treatment of disorder

We considered random Al-Zn alloys using two different
approaches within alloy theory, the coherent potential ap-
proximation (CPA) [41–44] and the locally self-consistent
Green’s function (LSGF) method [45,46]. Within these
methods it is assumed that there exists an underlying
crystal lattice, and the sites of this lattice are occupied
by the alloy components with certain probabilities. The
size mismatch of the alloy components in the Al-Zn alloy
is quite small. Although lattice distortions are certainly
essential for certain problems such as, for example, the
problem of calculating the equilibrium shape of precipi-
tates in this system [23], their effect on the total energy
is minute and fairly symmetric relative to the equiatomic
composition [22]. Thus, for our discussion the local distor-
tions of the underlying lattice can be safely neglected.

Within the CPA the occupation of each site of the
underlying lattice does not depend on the occupation of
neighboring sites, i.e. the short-range order effects are also
neglected. The average one-electron Green’s function is
calculated for an ordered lattice of effective scatterers that
replaces the real disordered alloy. The properties of these

effective atoms are determined self-consistently within the
single-site approximation under the condition that the
scattering of electrons off real atoms embedded in the ef-
fective medium vanishes on the average. The CPA is prob-
ably the most efficient approximation that allows one to
calculate such alloy properties as the electronic structure
and the Fermi surface [14,15,27,43,47–51]. Its accuracy
has recently been reexamined by several authors [52–54],
and the conclusion is that the CPA densities of states and
total energies for a completely random alloy agree well
with those calculated by methods which go beyond the
single-site approximation, like the LSGF method also used
in the present work.

The LSGF method is a linear (order-N) scaling
method of electronic structure calculations for large su-
percells with an arbitrary distribution of atoms of differ-
ent kinds on an underlying crystal lattice. The order-N
scaling is achieved by associating each atom in the system
with its so-called local interaction zone (LIZ) [55,56]. In-
side each LIZ the multiple scattering problem, formulated
in terms of the Dyson equation for the LIZ Green’s func-
tion, is solved exactly. The convergence of the method is
controlled by the size of the LIZ, and its minimal size is en-
sured by embedding the LIZ into a self-consistent effective
medium. In contrast to the CPA, the LSGF method allows
one to include short-range order effects in alloys [45,57].
Also, it solves one of the problems arising in ab initio
implementations of the CPA, namely, it allows one to cal-
culate the electrostatic contribution to the one-electron
potential and energy of an alloy exactly within the shape
approximation which is used for the one-electron potential
and charge density. Usually, a spherical approximation is
used, either the muffin-tin (MT) or the atomic sphere ap-
proximation (ASA). Moreover, within the LSGF one can
improve on accuracy of calculations by going beyond the
ASA for the charge density but keeping the ASA for the
potential. This so-called ASA+M approach turns out to
have sufficient accuracy for surface energy [58] and va-
cancy formation energy [59] calculations. As will be pre-
sented elsewhere, it is essential to include these multipole
corrections in order to obtain accurate total energies of
Al-Zn alloys, as it is probably the general case for random
alloys between the sp-metals.

Thus, on one hand, we face a problem of calculating
the Fermi surface, and also of performing total energy cal-
culations on a very fine grid of concentrations in order to
calculate the derivatives, equation (3), where one would
prefer to apply the CPA. On the other hand, we need a
description of the electrostatic contribution to the one-
electron potential and energy, including multipole correc-
tions, with an accuracy of at least the LSGF ASA+M cal-
culations. In the next section we will show that a compro-
mise can be found within the modified screened impurity
model (SIM).

3.3 Screened impurity model

The screened impurity model developed in refer-
ences [14,60–62] is a simple model for estimating the
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electrostatic contribution to the one-electron potentials of
atoms in a random alloy, and to the alloy total energy.
This contribution exists due to a nonzero value of the net
charge on an alloy component i,

Qi =
∫

SWS

d3rρi − Zi, (5)

where SWS , Zi and ρi are the Wigner-Seitz radius, the
atomic number and the electron density of component i,
respectively. The SIM is based on two simple assump-
tions, that this net charge on the average is completely
screened by the first shell of effective atoms, and that
the screening charge is uniformly distributed among these
atoms. Recently, these assumptions have been justified by
Ruban and Skriver by means of the supercell LSGF cal-
culations [64].

Note, that in earlier studies of this problem [14,60–64]
only the monopole contributions to the one-electron po-
tential and energy were taken into consideration. As have
been mentioned above, the multipole contributions may
also be important in alloys of simple metals. Here we mod-
ify the SIM in the spirit of reference [64] and calculate the
electrostatic contributions to the one-electron potential of
alloy components, as well as to the total energy of a binary
alloy, using the following expressions:

V i
M = −e2 Qi

Reff

EM = −1
2
βe2c(1 − c)

(QA − QB)2

Reff
, (6)

where e is the electron charge and the screening radius
Reff , as well as the prefactor β, are two parameters of the
model. We remark, that within the ASA the Reff is usually
found to be close to the radius of the first coordination
shell, R1, and a value of β ≈ 1.2 brings the total energy of
a random alloy in the framework of the CPA in agreement
with the total energy calculated within the LSGF [53,64].
Below we will show that β and Reff can be chosen in such
a way that the CPA calculations reproduce the results of
the LSGF calculations within the ASA+M method.

In our LSGF ASA+M calculations [59], the random
Al-Zn alloys having the atomic fraction of Zn equal to 1/8,
1/6, 1/4, 1/3, 3/8, 1/2, 2/3, and 5/6 were modeled by su-
percells with a quasirandom distribution of atoms (with
zero Warren-Cowley short-range order parameters up to
the 4th coordination shell). The number of terms included
in the multipole expansions of the Madelung potential
and energy is determined by the angular momentum cut-
off lmax used in the Green’s functions calculations. In the
present calculations we used lmax = 3 and considered all
the nonzero multipole moments of the charge density up
to l = 2lmax = 6.

From the results of the LSGF ASA+M calculations
we determined the following SIM parameters: the effec-
tive screening radius, Reff = 0.731R1, and the Madelung
energy prefactor, β = 1.144. The CPA calculations were
then performed for the random Al-Zn alloys in the whole
concentration interval. In Figure 2 the difference of the

Fig. 2. Difference of the net charges inside the Al and Zn
atomic spheres, ∆Q = |QAl−QZn|, calculated using the LSGF
method with the multipole corrections included by means
of ASA+M technique (squares) and the CPA SIM (Reff =
0.731R1) scheme (full line). Also shown for comparison the
∆Q calculated within the LSGF-ASA method (diamonds) and
within the conventional CPA SIM (Reff = R1) scheme (dashed
line).

Table 1. Mixing energies Emix [mRy/atom] and lattice pa-
rameters [Å] of random fcc Al-Zn alloys, obtained by means of
the LSGF ASA+M and CPA SIM (Reff = 0.731R1) calcula-
tions.

cZn Emix Lattice parameter

CPA LSGF CPA LSGF

12.5 0.74 0.75 3.968 3.968

16.7 0.90 0.88 3.965 3.965

25.0 1.05 0.98 3.959 3.958

33.3 1.01 0.95 3.951 3.951

37.5 0.93 0.88 3.947 3.947

50.0 0.60 0.60 3.935 3.935

66.7 0.30 0.35 3.922 3.920

83.3 0.17 0.19 3.909 3.906

net charges inside the Al and Zn atomic spheres, ∆Q =
|QAl −QZn|, calculated using the LSGF ASA+M method
and the CPA method, is plotted as a function of concen-
tration. One can see that charges inside the AS agree very
well with each other. For comparison, we also show the
results of the LSGF ASA (i.e. without multipole contri-
butions) and the CPA SIM calculations with a conven-
tional parameter Reff = R1. Note that the LSGF ASA
and the CPA SIM (Reff = R1) results agree satisfactorily
with each other, but both sets of results are quite different
from those calculated within the LSGF ASA+M and CPA
SIM (Reff = 0.731R1) schemes.

In Table 1 we summarize the most important ground
state properties, the mixing energies Emix and the lat-
tice parameters of Al-Zn alloys, obtained by means of the
LSGF ASA+M and CPA SIM calculations. Again, one
can see very good agreement between them in the whole
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Fig. 3. Density of states of the fcc Al50Zn50 random alloy as
a function of energy (relative to the Fermi energy) calculated
using the LSGF ASA+M and the CPA SIM (Reff = 0.731R1)
methods. Results are indistinguishable from each other. Insert
shows an energy window around the Fermi level where the CPA
SIM curve is drawn by the full line, while the LSGF ASA+M
data are given by circles.

compositional range of stability of fcc Al-Zn alloys. In Fig-
ure 3 the densities of states for the Al50Zn50 random alloy,
obtained by the two above mentioned techniques, are pre-
sented. The LSGF ASA+M and the CPA SIM densities of
states are almost indistinguishable from each other. The
inset in Figure 3 shows, for a small energy window around
the Fermi level, that the CPA DOS (dots) follows exactly
the DOS calculated using the LSGF ASA+M (solid line).
Therefore, we conclude that the electronic structure and
cohesive properties of random fcc Al-Zn alloys can be ad-
equately represented by the CPA SIM scheme.

4 Results and discussion

4.1 Fermi surface topology in Al-Zn alloys

The Fermi surfaces of the alloys were depicted using the
results of the Bloch spectral density (BSD) A(k, EF ) cal-
culations [65] for the (001) section of the Brillouin zone.
The Fermi surface was associated with the k-space posi-
tions of the BSD peaks at Fermi energy EF . These peaks
were found to be rather sharp even for concentrated alloys.
This means that the Fermi electron lifetime is rather long,
and the Fermi surfaces in Al-Zn alloys are well-defined. In
more details the technique used in the present study was
outlined in reference [15].

In Figure 4a we show the Fermi surface of pure fcc Al,
and in Figure 5 the band structure of Al is given in order to
emphasize its connection with the Fermi surface. One can
see that the first band is fully occupied (the whole band
is below the Fermi level). The second and the third bands
are partially filled. The lenses at the faces of the Brillouin
zone correspond to occupied electron states of the second
band, whereas the feature near point K(U) and the small
pockets on line W-X correspond to electron states of the

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Sections of the Fermi surface of fcc Al-Zn random alloys
in the (001) plane at different alloy compositions, (a) pure fcc
Al, (b) Al95Zn05, (c) Al82Zn18, (d) Al74Zn26, (e) Al58Zn42, (f)
Al52Zn48, (g) Al40Zn60, (h) Al30Zn70.
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Fig. 5. Band structure of the fcc Al calculated within the ASA.

third band. We have found that 7 electronic topological
transitions occur in Al-Zn alloys when the concentration
of Zn increases from 0 to 70 at.%.

1-2. The first transition consists in the disappearance
of the small electron pockets belonging to the third band
on the line W-X (0 − 3 at.% Zn). The second topology
change coincides with the first one. Due to the existence of
a crossing point in the band structure of pure Al (Fig. 5),
the disappearance of the electron regions on line W-X
takes place simultaneously with a formation of a hole neck
at the same k point on line W-X. This neck connects the
large hole voids of the second band centered at Γ points
of the adjacent Brillouin zones. Because of the symmetry,
four such necks appear at each square face of the Brillouin
zone. The two topological transitions described above can
be seen when comparing Figures 4a and b.

3. Upon further addition of Zn, the electron region
belonging to the third band on the square face becomes
smaller, and disappears at a point on line U-X (16 −
18 at.% Zn), see Figures 4b and c. At the same time, the
hole necks in the second band grow towards each other on
the square face.

4. In Figure 4d we show that these necks have merged
at a point on lines UX at 24−26 at.% Zn. This also means
that the second band electron region surrounding point X
(center of a square face) becomes disconnected from the
second band electron regions at hexagonal faces of the
Brillouin zone.

5. A small hole pocket in the first band appears near
point W (40 − 42 at.% Zn). Due to the disorder-induced
smearing of the Fermi surface, the boundary of this pocket
is almost illegible in Figure 4e, but it can be better seen
in Figure 4f.

6. The electron regions of the second band on the
square faces disappear at points X (46 − 48 at.% Zn),
see Figure 4f.

Further increase of the Zn concentration leads to a
narrowing of the necks between the second band electron
regions centered on hexagonal faces, as can be seen in
Figure 4g near point K.

7. At a concentration of Zn in the interval 68−70 at.%,
a neck forms to connect the hole pockets of the first band
along the W-K-W line, Figure 4h.

The most important circumstance for the present sys-
tem is that at two narrow concentration intervals several
electronic topological transitions take place. Namely, tran-
sitions 1–3 occur at 3−16 at.% Zn and transitions 5 and 6
occur at about 40− 48 at.% Zn. It is also important that
the coinciding electronic topological transitions are of dif-
ferent kinds, i.e. they correspond to different topological
changes of the Fermi surface. Therefore, in each of these
two narrow concentration intervals, there are several dif-
ferent Van-Hove singularities in the density of electronic
states. Although such singularities are smeared due to the
substitutional disorder, especially in a concentrated alloy,
they are still well-pronounced in the Al-Zn DOS because
of the similarity of the scattering properties of Al and Zn.

4.2 Evolution of the alloy electronic structure
and the ETT

Let us consider the densities of states of the disordered Al-
Zn alloys. In the nearly-free-electron approximation the
density of states for pure Al is square root-like. However,
the crystal structure leads to a deformation of the energy
bands at the boundaries of the Brillouin zone. As a result
the density of states deviates from the nearly-free-electron
behavior. For the pure Al, the Fermi level is situated on
a slope of a peak (denoted by A in Fig. 6) of the density
of states. Upon an increase of the Zn concentration both
the number of occupied states in the alloy sp-band and
the Fermi energy decrease. At first, this brings the Fermi
level into a valley between peaks A and B (see Fig. 6), then
pushes it up the peak B, and, finally, the Fermi level falls
into a valley between peaks B and C at around 50 at.%
of Zn. The evolution of the alloy DOS (Fig. 6) confirms
this scenario. Indeed, at about 10 at. % of Zn the Fermi
level passes through the DOS minimum between A and B
peaks. This minimum can be associated with the almost
complete disappearance of the third band states. The in-
crease of the density of states at EF with further increase
of the Zn concentration is a result of the increase in the
Fermi surface area associated with the growth of necks be-
tween the hole states regions of the second band. The DOS
at the Fermi energy reaches maximum B (quite smeared
due to disorder) with the disruption of the electron neck
between the second band states, the fourth ETT, Fig-
ure 4d. Upon further increase of the Zn concentration the
Fermi surface area of the second band electron states near
point X decreases. Therefore, there is a decreasing contri-
bution to the state density at the Fermi level. Complete
disappearance of the second band electronic pocket near
point X (Figs. 4e and f) coincides with the minimum of
the DOS at the Fermi energy (a valley between peaks B
and C, Fig. 6). Further addition of Zn leads to the in-
crease of the density of states at the Fermi level due to
the growth of the hole pockets corresponding to the first
band around point W.
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Fig. 6. Density of states of the fcc Al-Zn alloys as a function
of energy (relative to the Fermi energy εF ) at different alloy
compositions. DOS peaks discussed in the text are marked with
arrows.

Thus, as has been pointed out above, the coexistence
of several ETTs of different kind in a narrow concentration
interval at around 45 at. % of Zn leads to a strong pecu-
liarity (a minimum) in the DOS. According to equation (3)
one can expect a superior stability of an alloy whose Fermi
level falls into the DOS minimum. As a matter of fact, this
conclusion is consistent with the Hume-Rothery criterion
of alloy stability [1] which has been recently re-examined
by Paxton et al. [6]. The behavior of the mixing energy in
the Al-Zn system adheres to this criterion.

4.3 Influence of the ETT on the thermodynamic
properties of Al-Zn alloys

The calculated energy of formation and the lattice pa-
rameters of disordered fcc Al-Zn alloys are shown in Fig-
ure 7. Attention must be called to the fact that we have
taken into account the experimentally derived energy dif-
ference between the fcc and hexagonal structures for pure
Zn, 2.26 mRy [19]. According to our results, no ordered
or disordered alloys are stable at zero temperature, al-

  

  

  

  

Fig. 7. Energy of formation (a) and lattice parameter (b) of
random Al-Zn alloys as a function of concentration. Experi-
mental data are taken from reference [17] (enthalpy of forma-
tion) and reference [67] (lattice parameter).

though their positive enthalpies of formation are rather
small. This indicates that, due to their chemical proxim-
ity, Al and Zn have rather weak tendency to form inter-
metallic compounds or towards phase separation. In spite
of the fact that the small enthalpies of formation in Al-Zn
system are at the edge of accuracy of total energy calcu-
lations by the LMTO-ASA-CPA method, the numerical
agreement of theoretical and experimental results is quite
good. Our results are also in satisfactory agreement with
recent full-potential calculations by Müller et al. [22] Cal-
culated lattice parameters of fcc Al-Zn alloys are underes-
timated by about 2% compared to experiment, but their
concentration dependence is well reproduced in our study.

We have also estimated the free energy of formation of
disordered alloy, F (c) = E(c) − TS, taking into account
only the configuration entropy in a mean field approxi-
mation, Sconf = −kB[c ln(c) + (1 − c) ln(1 − c)]. Fig-
ure 8 shows that the free energy of Al-Zn alloys, which is
positive at low temperatures, gradually becomes negative
when the temperature increases. At approximately 400 K,
the α2 phase becomes stable at ∼ 53 at.% Zn concen-
tration (experimentally, the temperature of this transi-
tion is 548 K [17]). At temperatures above 400 K, we
find that two fcc phases, α1 and α2, are in equilibrium.
Reduced temperature of monotectoid transformation can
be explained by the fact that the enthalpy of formation
obtained in our LMTO-CPA-ASA calculations is under-
estimated compared to the experimental data. Also, we
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Fig. 8. Evolution of the free energy of random Al-Zn alloys
with temperature. Only the mean-field configurational entropy
term is included.

correctly predict the width of miscibility gap, however ob-
tained concentrations of α1 and α2 phases deviate some-
what from corresponding values on the phase diagram.
The main reason for this deviation consists of using the
ASA for the total energy calculations. Our calculations
predict that the miscibility gap closes up at 800 K, that
is above the experimental data. It can be explained by
the fact that we have calculated the free energies of com-
pletely random alloys, whereas it is known that real Al-Zn
alloys exhibit a certain degree of short-range order [22,66].
Thus, the most important features of the Al-Zn phase di-
agram are reproduced in our study, and we conclude that
mixing energies calculated in this work are suitable for a
qualitative analysis of the physical phenomena that lead
to the particular topology of this diagram.

In order to establish an influence of the ETT on the
energy of mixing in fcc Al-Zn alloys, let us first point out
that a simple consideration based on the chemical prox-
imity and a small size mismatch between Al and Zn could
lead one to an expectation that a model of regular solid
solutions should describe the energetics in this system. Ac-
cording to this model the mixing energy Emix ∼ c(1− c),
i.e. it is symmetric relative to equiatomic composition,
and d2Emix/dc2 = const. However, due to ETT the
d2Emix/dc2 varies with concentration, equation (3). The
strongest singularity of the DOS is due to the confluence
of two ETT at ∼ 45 at % of Zn. They occur when the
Fermi level passes a DOS valley between peaks B and C
at ∼ 50 at % of Zn. Therefore, relative stability of ran-
dom alloys as a function of concentration deviates from
the model of regular solid solutions, and the mixing en-
ergy, as well as the miscibility gap on the Al-Zn phase
diagram, become assymetric with respect to equiatomic
composition. To justify this conclusion even further, we
have plotted in Figure 9 the density of states at the Fermi
energy (panel a) and the second derivative of the mix-
ing energy (panel b) as a function of Zn concentration

Fig. 9. (a) Density of states at the Fermi energy and (b) the
second derivative of the mixing energy as a function of Zn
concentration within the stability range of fcc Al-Zn alloys.

in fcc Al-Zn alloys. According to equation (3) these two
curves must anticorrelate with each other as they indeed
do (Fig. 9). Note, that small deviations can be explained
by the fact that equation (3) considers only the band en-
ergy term, while in practice we have obtained the Emix

from the total energy calculations. It is noteworthy, that
there is a concentration region in which the sign of the sec-
ond derivative is positive, 50 − 55 at.% Zn. The positive
sign of the second derivative means that these alloys are
metastable, i.e. some nucleation energy is necessary to ini-
tiate a process of alloy decomposition. The alloys beyond
this concentration interval are absolutely unstable with
respect to the spinodal decomposition.

5 Summary

The electronic structure, Fermi surface and thermody-
namic properties of fcc Al-Zn alloys were calculated within
the stability range of the fcc solid solutions 0− 70 at.% of
Zn. Our calculations were based on the density functional
theory and employ a basis set of the linear muffin-tin or-
bitals in the atomic sphere approximation. We considered
random Al-Zn alloys using two different approaches within
alloy theory, the coherent potential approximation and the
locally self-consistent Green’s function (LSGF) method.
We use a modified screened impurity model, SIM, for es-
timating the electrostatic contribution to the one-electron
potential of an atom in an alloy, and to the alloy total en-
ergy. For selected set of alloy concentration we show that
parameters of this model can be chosen in such a way
that the CPA ASA calculations reproduce the LSGF cal-
culations with multipole corrections to the ASA included
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by means of the ASA+M method. The CPA calculations
were then performed for random Al-Zn alloys in the whole
concentration interval.

We found 7 electronic topological transitions in Al-Zn
alloys in the concentration interval 0−70 at.% of Zn. There
are two ETT that occur at about 45 at.% Zn. Coexistence
of two ETT of different types in the narrow concentra-
tion interval leads to the strong singularity in the alloy
density of states at the Fermi level. Due to this a relative
stability of random Al-Zn alloys as a function of concen-
tration deviates from the model of regular solid solutions,
and the mixing energy, as well as the miscibility gap on
the Al-Zn phase diagram, become assymetric with respect
to equiatomic composition.
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